Which Action Shortens The Fibers Of The Serratus Anterior | Human muscle system – The shoulder

You are searching about Which Action Shortens The Fibers Of The Serratus Anterior, today we will share with you article about Which Action Shortens The Fibers Of The Serratus Anterior was compiled and edited by our team from many sources on the internet. Hope this article on the topic Which Action Shortens The Fibers Of The Serratus Anterior is useful to you.

Question: Which action shortens the fibers of the serratus anterior?

depress, abduct, & upwardly rotate the scapula.

Human muscle system – The shoulder

The shoulder

The shoulder is a complex ball-and-socket joint comprising the head of the humerus, the clavicle (collarbone), and the scapula. The shoulder’s main motions are flexion, extension, abduction, adduction, internal rotation, and external rotation.

Shoulder flexion is movement of the shoulder in a forward motion. An example of shoulder flexion can be seen when reaching forward to grasp an object. That action is accomplished primarily by the combined actions of the deltoid muscle in the uppermost extent of the arm, the pectoralis major muscle in the chest, the coracobrachialis muscle on the inside of the upper arm, and the biceps brachii muscles on the front of the upper arm.

Extension of the shoulder is opposite to flexion. Pure shoulder extension is the movement of the arm directly behind the body, as in receiving a baton in a relay race. That movement is accomplished by the actions of the deltoid muscle, the latissimus dorsi muscle in the back, the teres major muscle in the armpit area, and the triceps muscle in the back of the upper arm. The triceps, as the name suggests, consists of three heads that originate from different surfaces but share the same insertion at the olecranon process of the ulna (a bone in the forearm); the three heads together act to extend the elbow.

Shoulder adduction and abduction serve to lower the arm toward and lift the arm away from the body, respectively. They can be visualized by picturing someone doing jumping jacks. Adduction is accomplished primarily by the pectoralis major, latissimus dorsi, teres major, triceps, and coracobrachialis. The deltoid and the supraspinatus, a muscle that runs along the scapula in the back, are the two main abductors of the shoulder.

An example of external rotation of the shoulder is seen in a tennis backhand stroke. External rotation is attributed primarily to the deltoid, the teres minor in the armpit area, and the infraspinatus muscle, which covers the scapula. Internal rotation of the shoulder is the opposite of external rotation. An example is the shoulder movement that occurs when reaching into a back pocket. That movement is achieved through the coordinated action of the pectoralis major, latissimus dorsi, deltoid, teres major, and subscapularis muscles. (The subscapularis is a deep muscle situated on the anterior, or front-facing, surface of the scapula.)

The teres minor, subscapularis, supraspinatus, and infraspinatus muscles together form the rotator cuff, which stabilizes the humeral head (the ball portion of the ball-and-socket shoulder joint). The muscles of the rotator cuff are common sites of injury in adults, particularly among people who perform overhead motions repeatedly (e.g., throwing a baseball or painting a ceiling). Several of the rotator cuff muscles have tendons that run under the acromion, a bony prominence at the distal end of the scapula. (The term distal describes a relative position away from the centre of the body; it often is contrasted with the term proximal, which describes a relative position near to the centre of the body.) The position of the tendons and of the subacromial bursae (fluid-filled sacs located beneath the acromion) leaves them vulnerable to compression and pinching, which can result in an injury known as shoulder impingement syndrome.

The arm

 

In addition to aiding the movement of the shoulder, the muscles of the upper arm produce various movements of the forearm. For example, the primary muscles involved in forearm flexion, in which the angle formed at the elbow becomes smaller (i.e., the hand moves closer to the shoulder), are the biceps brachii, the brachialis (situated beneath the biceps brachii in the upper arm), and the brachioradialis (the origin of which is on the humerus). Minor contributions to forearm flexion are provided by the coracobrachialis and by flexor muscles situated in the anterior compartment of the forearm (the palm side of the forearm; also known as the flexor compartment), including the pronator teres, the flexor carpi radialis, the flexor digitorum superficialis, the palmaris longus, and the flexor carpi ulnaris.

Extension of the forearm increases the angle at the elbow, moving the hand away from the shoulder. That action is accomplished primarily by the triceps brachii. Other muscles that make minor contributions to forearm extension include the extensor muscles of the posterior compartment of the forearm (the side of the forearm that is contiguous with the back of the hand; also known as the extensor compartment), including the extensor carpi radialis longus, the extensor carpi radialis brevis, the extensor digitorum, the extensor carpi ulnaris, and the anconeus.

The wrist

Wrist flexion refers to movement of the wrist that draws the palm of the hand downward. That action is carried out by the flexor carpi radialis, the flexor carpi ulnaris, the flexor digitorum superficialis, the flexor digitorum profundus, and the flexor pollicis longus.

Wrist extension, by contrast, shortens the angle at the back of the wrist. The muscles responsible for that action are the extensor carpi radialis longus and the extensor carpi radialis brevis, which also abduct the hand at the wrist (move the hand in the direction of the thumb, or first digit); the extensor digitorum, which also extends the index to little finger (the second to fifth digits); the extensor digiti minimi, which also extends the little finger and adducts the hand (moves the hand in the direction of the little finger); and the extensor carpi ulnaris, which also adducts the hand. Other small muscles that cross the wrist joint may add to wrist extension, but they do so to only a small degree.

Wrist supination is the rotation of the wrist that brings the palm facing up. The supinator muscle in the posterior compartment acts to supinate the forearm. The biceps brachii also adds to supination. Pronation is the opposing action, in which the wrist is rotated so that the palm is facing down. The pronator quadratus, a deep muscle in the anterior compartment, along with the pronator teres, pronates the forearm.

The hand

The hand is a complex structure that is involved in fine motor coordination and complex task performance. Its muscles generally are small and extensively innervated. Even simple actions, such as typing on a keyboard, require a multitude of precise movements to be carried out by the hand muscles. Because of that complexity, the following paragraphs cover only the primary action of each hand muscle.

Several muscles that originate at the posterior surface of the ulna or the radius (the other bone in the forearm) have their actions in the hand. Those include the abductor pollicis longus, which abducts and extends the thumb; the extensor pollicis brevis, which extends the metacarpophalangeal (MCP) joint of the thumb; the extensor pollicis, which extends the distal phalanx (finger bone) of the thumb; and the extensor indicis, which extends the index finger at the MCP joint. (MCP joints are located between the metacarpal bones, which are situated in the hand, and the phalanges, which are the small bones of the fingers.)

Although several of the muscles that move the hand have their origins in the forearm, there are many small muscles of the hand that have both their origin and their insertion within the hand. Those are referred to as the intrinsic muscles of the hand. They include the palmaris brevis, which assists with grip; the umbricals, which flex the MCP joints and extend the interphalangeal joints (IPs; the joints between the phalanges) of the fingers; the palmar interossei, which adduct the fingers toward the middle finger (the third digit); and the dorsal interossei, which abduct the fingers away from the middle finger. All the interossei flex the MCP joints and extend the IP joints.

The thenar eminence is located on the palm side of the base of the thumb and is composed of three muscles, the abductor pollicis brevis, the flexor pollicis brevis, and the opponens pollicis, all of which are innervated by the median nerve. The abductor pollicis brevis abducts the thumb; the flexor pollicis brevis flexes the MCP joint of the thumb; and the opponens pollicis acts to oppose the thumb to the other fingers. The adductor pollicis, which is not part of the thenar eminence, acts to adduct the thumb.

The hypothenar enimence is located on the palm side of the hand below the little finger. It contains three muscles that are innervated by the deep branch of the ulnar nerve. The abductor digiti minimi abducts the little finger. The flexor digiti minimi flexes the little finger. The opponens digiti minimi opposes the little finger with the thumb.

The abdomen

There are three muscular layers of the abdominal wall, with a fourth layer in the middle anterior region. The fourth layer in the midregion is the rectus abdominis, which has vertically running muscle fibres that flex the trunk and stabilize the pelvis. To either side of the rectus abdominis are the other three layers of abdominal muscles. The deepest of those layers is the transversus abdominis, which has fibres that run perpendicular to the rectus abdominus; the transversus abdominis acts to compress and support the abdomen and provides static core stabilization. The internal oblique layers run upward and forward from the sides of the abdomen, and the external oblique layers, which form the outermost muscle layers of the abdomen, run downward and forward. The internal oblique layers act in conjunction with the external oblique on the opposite side of the body to flex and rotate the trunk toward the side of the contracting internal oblique (“same-side rotator”).

The hip

The hip joint is a complex weight-bearing ball-and-socket joint that can sustain considerable load. The socket of the joint is relatively deep, allowing for stability but sacrificing some degree in range of motion. The movements described in this section include flexion, extension, abduction, and adduction.

Hip flexion is the hip motion that brings the knee toward the chest. The major muscles of hip flexion include the iliopsoas, which is made up of the psoas major, psoas minor, and iliacus. Together, those muscles act mainly to flex the hip, but they also contribute to abdominal flexion and hip stabilization. Other hip flexors include the sartorius, the rectus femoris, the pectineus, and the gracilis. The sartorius also contributes to external hip rotation and knee extension and abduction, and the rectus femoris also acts in knee extension. The pectineus is also involved in hip adduction and internal rotation.

Hip extension is accomplished primarily by the muscles of the posterior thigh and buttocks, which when contracted serve to move the thigh from a flexed position toward the midline of the body or the trunk of the body from a bent position toward a more-erect posture. Hip extension is accomplished mostly by the gluteus maximus, the biceps femoris (which is divided into two heads, the long head and the short head), the semitendinosus, and the semimembranosus. A minor contribution is also provided by the adductor magnus and other small pelvic muscles.

The movement of adduction is used to describe a direction of limb motion that serves to take the limb from a lateral position to its more-axial alignment. During a jumping-jack exercise, for example, abduction of the leg occurs when it is moved away from the midline and adduction when it is moved back toward the midline. The main abductors of the hip are the gluteus medius, gluteus minimus, and tensor fascia lata. Those three muscles also serve to internally rotate the thigh in an extended position and externally rotate the thigh in the flexed position. Another minor contributor is the piriformis. The main hip adductors are the adductor magnus, the adductor brevis, and the adductor longus. A minor contribution to hip adduction is performed by the pectineus and the gracilis.

The upper leg and knee

Extension of the knee is accomplished by a group of muscles collectively referred to as the quadriceps femoris, which increases the angle of the knee, bringing the lower leg into a straight position. Knee extension is used in the forward, swing phase of the gait and is integral in movements such as kicking. The quadriceps femoris group includes the vastus medius, vastus lateralis, vastus intermedius, and rectus femoris. A minor contribution to knee extension is provided by the sartorius.

Knee flexion refers to bending of the knee from the straight position. The muscles that perform that action oppose those of knee extension and are generally referred to as the hamstring muscles. The hamstring muscles are situated in the back of the thigh and include the biceps femoris, the semitendinosus, and the semimembranosus. Small contributions to knee flexion are made by the gastrocnemius muscle in the back of the calf and by several small muscles that cross the knee joint posteriorly.

The lower leg and foot

The muscles of the lower leg and foot are complex and work in many planes. Their actions depend on whether the person is bearing weight, as well as on the position of the foot. The following paragraphs provide a brief overview of the actions of the muscles of the lower leg and foot.

Dorsiflexion refers to ankle flexion in the direction of the dorsum, or anterior surface of the foot (the surface of the foot viewed from above). Dorsiflexion is accomplished by several muscles, including the tibialis anterior, which in addition to dorsiflexion also inverts the foot (tilts the foot toward the midline), stabilizes the foot when striking the ground, and locks the ankle when kicking. The extensor digitorum longus (EDL) also acts in dorsiflexion and functions to extend the last four toes. In addition to the EDL, some individuals also have a muscle called the peroneus tertius (fibularis tertius), which participates to a limited extent in dorsiflexion and eversion of the foot (tilting of the foot away from the midline). The extensor hallucis longus primarily acts in big toe (hallux) dorsiflexion, but it also acts to dorsiflex, as well as weakly invert, the ankle.

Plantarflexion refers to flexion of the ankle in the direction of the sole of the foot. That is most easily demonstrated by having a person stand on his or her toes. The majority of ankle plantarflexion is performed by the large calf musculature, including the gastrocnemius and the soleus, which lies just behind the gastrocnemius. It is generally accepted that those are two distinct muscles; however, there is some debate as to whether the gastrocnemius and the soleus are two parts of the same muscle.

Other muscles of the lower leg and foot include the plantaris, which runs obliquely between the gastrocnemius and the soleus; the flexor hallucis longus, which contributes to ankle flexion but is involved primarily in big toe flexion; the flexor digitorum longus, which also flexes the second to fifth toes; the peroneus longus, which flexes the ankle and everts the foot; and the peroneus brevis, which is involved in plantarflexion and eversion of the foot.

Intrinsic muscles of the foot arise in the foot and do not cross the ankle joint. Hence, their action is confined to the foot. The intrinsic muscles of the foot include the abductor hallucis, which abducts the big toe; the flexor digitorum brevis, which flexes the second to fifth toes; the abductor digiti minimi, which abducts and flexes the fifth toe; the quadratus plantae, which assists in toe flexion; the lumbricals, which flex the metatarsophalangeal (MTP) joints and extend the distal IP and proximal IP joints of the toes; the flexor hallucis brevis, which flexes the big toe; and the adductor hallucis, which flexes and contracts the big toe. The adductor hallucis has two heads, the oblique head and the transverse head, which share an insertion on the lateral (outer) side of the base of the proximal phalanx of the big toe. The oblique head arises from the base of the second to fourth metatarsal bones, and the transverse head arises from the ligaments of the MTP joints of the third to fifth toes. The flexor digiti minimi brevis extends and adducts the fifth toe. The dorsal interossei abduct the toes, and the plantar interossei adduct the toes.

Shane W. CummingsChristopher Tangen

Evolutionary context

The arrangement of striated muscle in modern humans conforms to the basic plan seen in all pronograde quadrupedal vertebrates and mammals (that is, all vertebrates and mammals that assume a horizontal and four-legged posture). The primates (the order of mammals to which humans belong) inherited the primitive quadrupedal stance and locomotion, but since their appearance in the Late Cretaceous Period some 65 million years ago, several groups have modified their locomotor system to concentrate on the use of the arms for propulsion through the trees. The most-extreme expression of that skeletal adaptation in living primates is seen in the modern gibbon family. Their forelimbs are relatively elongated; they hold their trunk erect; and, for the short periods that they spend on the ground, they walk only on their hind limbs (in a bipedal fashion).

Modern humans are most closely related to the living great apes: the chimpanzee, the gorilla, and the orangutan. The human’s most-distant relative in the group, the orangutan, has a locomotor system that is adapted for moving among the vertical tree trunks of the Asian rainforests. It grips the trunks equally well with both fore and hind limbs and was at one time aptly called quadrumanal, or “four-handed.”

There is little direct fossil evidence about the common ancestor of modern humans, chimpanzees, and gorillas, so inferences about its habitat and locomotion must be made. The ancestor was most likely a relatively generalized tree-dwelling animal that could walk quadrupedally along branches as well as climb between them. From such an ancestor, two locomotor trends were apparently derived. In one, which led to the gorillas and the chimpanzees, the forelimbs became elongated, so when those modern animals come to the ground, they support their trunks by placing the knuckles of their outstretched forelimbs on the ground. The second trend involved shortening the trunk, relocating the shoulder blades, and, most important, steadily increasing the emphasis on hind-limb support and truncal erectness. In other words, that trend saw the achievement of an upright bipedal, or orthograde, posture instead of a quadrupedal, or pronograde, one. The upright posture probably was quite well established by 3 million to 3.5 million years ago, as evidenced both by the form of the limb bones and by the preserved footprints of early hominins found from that time.

READ  Nelson Mandela'S Presidential Inauguration Took Place In What City African National Congress | History, Apartheid, & Facts

Changes in the muscles of the lower limb

The major muscular changes directly associated with the shift to bipedal locomotion are seen in the lower limb. The obvious skeletal changes are in the length of the hind limb, the development of the heel, and the change in the shape of the knee joint so that its surface is flat and not evenly rounded. The hind limbs of apes are relatively short for their body size compared with modern human proportions.

The changes that occurred in the bones of the pelvis are not all directly related to the shift in locomotion, but they are a consequence of it. Bipedality, by freeing the hands from primary involvement with support and locomotion, enabled the development of manual dexterity and thus the manufacture and use of tools, which has been linked to the development in human ancestors of language and other intellectual capacities. The result is a substantially enlarged brain. Large brains clearly affect the form of the skull and thus the musculature of the head and neck. A larger brain also has a direct effect on the pelvis because of the need for a wide pelvic inlet and outlet for the birth of relatively large-brained young. A larger pelvic cavity means that the hip joints have to be farther apart. Consequently, the hip joints are subjected to considerable forces when weight is taken on one leg, as it has to be in walking and running.

To counteract that, the muscles (gluteus minimus and gluteus medius) that are used by the chimpanzee to push the leg back (hip extensors) have shifted in modern humans in relation to the hip joint so that they now act as abductors to balance the trunk on the weight-bearing leg during walking. Part of a third climbing muscle (gluteus maximus) also assists in abduction as well as in maintaining the knee in extension during weight bearing. The gluteal muscles are also responsible for much of the rotation of the hip that has to accompany walking. When the right leg is swung forward and the right foot touches the ground, the hip joint of the same side externally rotates, whereas that of the opposite side undergoes a similar amount of internal rotation. Both of those movements are made possible by rearrangements of the muscles crossing the hip.

The bones of the trunk and the lower limb are so arranged in modern humans that standing upright requires a minimum of muscle activity. Some muscles, however, are essential to maintaining balance, and the extensors of the knee have been rearranged and realigned, as have the muscles of the calf.

The foot is often but erroneously considered to be a poor relation of the hand. Although the toes in modern humans are normally incapable of useful independent movement, the flexor muscles of the big toe are developed to provide the final push off in the walking cycle. Muscles of all three compartments of the modern human lower leg contribute to making the foot a stable platform, which nonetheless can adapt to walking over rough and sloping ground.

Changes in the muscles of the upper limb

The human upper limb has retained an overall generalized structure, with its details adapted to upright existence. Among the primitive features that persist are the clavicle, or collarbone, which still functions as part of the shoulder; the ability to twist one of the forearm bones (the radius) around the other (the ulna) so that the palm is turned forward or backward, a process called pronation and supination; and a full complement of five digits in the hand.

Pronation and supination of the forearm, which allows the palm of the hand to rotate 180°, is not peculiar to humans. That movement depends upon the possession of both a small disk in the wrist joint and an arrangement of the muscles such that they can rotate the radius to and fro. Both the disk and the muscle arrangement are present in the great apes.

In quadrupedal animals the thorax (chest) is suspended between the shoulder blades by a muscular hammock formed by the serratus anterior muscle. In upright sitting and standing, however, the shoulder girdle is suspended from the trunk. The scapula, or shoulder blade, floats over the thoracic surface by reason of the arrangement of the fibres of the serratus anterior muscle and the support against gravity that is provided by the trapezius, rhomboid, and levator scapulae muscles. When the arms are required to push forward against an object at shoulder level, their action is reminiscent of quadrupedal support.

The change in shape of the chest to emphasize breadth rather than depth altered the relation of muscles in the shoulder region, with an increase in size of the latissimus dorsi muscle and the pectoralis major muscle. The human pectoralis minor muscle has forsaken its attachment to the humerus, the long bone of the upper arm, and presumably derives some stability from attaching to the coracoid process, a projection from the scapula, instead of gliding over it.

The hand of a chimpanzee is dexterous, but the proportions of the digits and the rearrangement and supplementation of muscles are the major reasons for the greater manipulative ability of the hand of a modern human. Most of those changes are concentrated on the thumb. For example, modern humans are the only living hominids to have a separate long thumb flexor, and the short muscle that swings the thumb over toward the palm is particularly well developed in humans. That contributes to the movement of opposition that is crucial for the so-called precision grip—i.e., the bringing together of the tips of the thumb and forefinger.

Changes in the muscles of the head and neck

The muscle group of the head and neck is most directly influenced by the change to an upright posture. That group comprises the muscles of the back (nape) and side of the neck. Posture is not the only influence on those muscles, for the reduction in the size of the jaws in modern humans also contributes to the observed muscular differences. Generally, those involve the reduction in bulk of nuchal (nape) muscles. In the upright posture the head is more evenly balanced on the top of the vertebral column, so less muscle force is needed, whereas in a pronograde animal with large jaws the considerable torque developed at the base of the skull must be resisted by muscle force. The poise of the human head does pose other problems, and the detailed attachment and role of some neck muscles (e.g., sternocleidomastoid) are different in humans from those in apes.

Changes in the muscles of the trunk

The consequences of an upright posture for the support of both the thoracic and the abdominal viscera are profound, but the muscular modifications in the trunk are few. Whereas in pronograde animals the abdominal viscera are supported by the ventral abdominal wall, in the orthograde posture most support comes from the pelvis. That inevitably places greater strain on the passage through the muscles of the anterior abdominal wall, the inguinal canal, which marks the route taken by the descending testicle in the male. Weakness in the canal can result in herniation.

Differences are also seen in the musculature, the levator ani, that supports the floor of the pelvis and that also controls the passage of feces. The loss of the tail in all apes has led to a major rearrangement of that muscle. There is more overlap and fusion between the various parts of the levator ani in modern humans than in apes, and the muscular sling that comprises the puborectalis in humans is more-substantial than in apes.

The muscular compression of the abdomen and the thorax that accompanies upright posture aids the vertebral column in supporting the body and in providing a firm base for upper-limb action. Anteroposterior (fore-and-aft) stability of the trunk is achieved by balancing the flexing action of gravity against back muscles that act to extend the spine. Lateral stability is enhanced by the augmented leverage provided to the spinal muscles by the broadening of the chest.

Bernard WoodRobin Huw Crompton

cardiac muscle
  • Introduction
Fast Facts
  • Facts & Related Content
Media
  • Images
More
  • More Articles On This Topic
  • Contributors
  • Article History

 

cardiac muscle

anatomy

Print    

Alternate titles: heart muscle, myocardium

mammalian heart

mammalian heart

 

cardiac muscle, also called myocardium, in vertebrates, one of three major muscle types, found only in the heart. Cardiac muscle is similar to skeletal muscle, another major muscle type, in that it possesses contractile units known as sarcomeres; this feature, however, also distinguishes it from smooth muscle, the third muscle type. Cardiac muscle differs from skeletal muscle in that it exhibits rhythmic contractions and is not under voluntary control. The rhythmic contraction of cardiac muscle is regulated by the sinoatrial node of the heart, which serves as the heart’s pacemaker.

The heart consists mostly of cardiac muscle cells (or myocardium). The outstanding characteristics of the action of the heart are its contractility, which is the basis for its pumping action, and the rhythmicity of the contraction. The amount of blood pumped by the heart per minute (the cardiac output) varies to meet the metabolic needs of peripheral tissues, particularly the skeletal muscles, kidneys, brain, skin, liver, heart, and gastrointestinal tract. The cardiac output is determined by the contractile force developed by the cardiac muscle cells, as well as by the frequency at which they are activated (rhythmicity). The factors affecting the frequency and force of heart muscle contraction are critical in determining the normal pumping performance of the heart and its response to changes in demand.

Cardiac muscle cells form a highly branched cellular network in the heart. They are connected end to end by intercalated disks and are organized into layers of myocardial tissue that are wrapped around the chambers of the heart. The contraction of individual cardiac muscle cells produces force and shortening in these bands of muscle, with a resultant decrease in the heart chamber size and the consequent ejection of the blood into the pulmonary and systemic vessels. Important components of each cardiac muscle cell involved in excitation and metabolic recovery processes are the plasma membrane and transverse tubules in registration with the Z lines, the longitudinal sarcoplasmic reticulum and terminal cisternae, and the mitochondria. The thick (myosin) and thin (actin, troponin, and tropomyosin) protein filaments are arranged into contractile units, with the sarcomere extending from Z line to Z line, that have a characteristic cross-striated pattern similar to that seen in skeletal muscle.

The rate at which the heart contracts and the synchronization of atrial and ventricular contraction required for the efficient pumping of blood depend on the electrical properties of the cardiac muscle cells and on the conduction of electrical information from one region of the heart to another. The action potential (activation of the muscle) is divided into five phases. Each of the phases of the action potential is caused by time-dependent changes in the permeability of the plasma membrane to potassium ions (K+), sodium ions (Na+), and calcium ions (Ca2+).

Video about Which Action Shortens The Fibers Of The Serratus Anterior

 

Question about Which Action Shortens The Fibers Of The Serratus Anterior

If you have any questions about Which Action Shortens The Fibers Of The Serratus Anterior, please let us know, all your questions or suggestions will help us improve in the following articles!

The article Which Action Shortens The Fibers Of The Serratus Anterior was compiled by me and my team from many sources. If you find the article Which Action Shortens The Fibers Of The Serratus Anterior helpful to you, please support the team Like or Share!

[ad_1]

Rate Articles Which Action Shortens The Fibers Of The Serratus Anterior

Rate: 4-5 stars
Ratings: 3434
Views: 6076919 8

[ad_2]

Search keywords Which Action Shortens The Fibers Of The Serratus Anterior

Which Action Shortens The Fibers Of The Serratus Anterior
way Which Action Shortens The Fibers Of The Serratus Anterior
tutorial Which Action Shortens The Fibers Of The Serratus Anterior
Which Action Shortens The Fibers Of The Serratus Anterior free

Leave a Reply