Está buscando sobre Como Calcular El Termino General De Una Progresion Geometrica, hoy compartiremos con usted un crónica sobre Como Calcular El Termino General De Una Progresion Geometrica compilado y editado por nuestro hueste a nacer de muchas fuentes en Internet. Espero que oriente crónica sobre el signo Como Calcular El Termino General De Una Progresion Geometrica te sea herramienta.
Como Calcular El Termino General De Una Progresion Geometrica
A geometric progression is a sequence of experimental numbers called terms, in which each term is obtained by multiplying the previous term by a constant called reason either hábitat of progression. If it is denoted by
to the term that occupies the position
of the sequence, the value of any term can be obtained from the first (
) and reason (
) using the following formula called General term:
Examples of geometric progressions
- The progression 5, 15, 45, 135, 405,…’ is a geometric progression for good reason.
- The progressions 1, 2, 4, 8, 16,… and 5, 10, 20, 40,… are geometric with reason
. - The progression -3, 6, -12, 24, … is right
. This progression is also an alternate succession. - Other examples are: the paradox of Achilles and the tortoise, the problem of wheat and the chessboard, and the number of movements of the rings in the tower of Hanoi.
recursive definition
Is named geometric progression a number sequence (
) defined by the conditions
- 1&longrightarrow &b_n-1cdot qendarray right.»>
called recursive equation of order 1 (
),
(
is the ratio of geometric progression)
Monotony
A geometric progression is monotone increasing when each term is greater than or equal to the previous one (
), monotone decreasing when each term is less than or equal to the previous one (
), constant when all terms are equal (
) Y alternated when each term has a different sign than the previous one (occurs when
).
Monotonicity as a function of the first term,
and of reason,
:
0″> | 1″> | growing |
decreasing | ||
1″> | decreasing | |
growing | ||
constant | ||
alternated |
Sum of terms of a geometric progression
Sum of the first n terms of a geometric progression
It is denoted by
to the sum of the
first consecutive terms of a geometric progression:
This sum can be calculated from the first term
and of reason
using the formula
|
Be
Both members of the equality are multiplied by the ratio of the progression . since
If we proceed to subtract from this equality the first one: since all intermediate terms mampara each other out. clearing : In this way, the sum of the terms of a geometric progression when the first and last terms of the same are known. If you want to simplify the formula, you can express the universal term of the progression What: which expresses the sum of consecutive terms of a geometric progression as a function of the first term and the ratio of the progression. |

Geometric series 1 + 1/2 + 1/4 + 1/8 + … converges to 2.
The previous procedure can be generalized to obtain the sum of the consecutive terms included between two arbitrary elements
Y
(both included):
Sum of infinite terms of a geometric progression
If the absolute value of the ratio is less than unity
, the sum of the infinitely many decreasing terms of the geometric progression converges towards a finite value. Indeed, yes
,
tends towards 0, so that:
Finally, the sum of the infinite terms of a geometric progression with a ratio less than unity is:
- ,
presticioso case
An example of geometric progression appears in the case of one of Zeno’s paradoxes: the challenge of Achilles and the tortoise.
product of the first no terms of a geometric progression
The product of the
first terms of a geometric progression can be obtained by the formula
- (Yeah 0″>).
Since the logarithms of the terms of a geometric progression of ratio
(Yeah
0″>), are in arithmetic progression of difference
one has:
- ,
and taking antilogarithms the formula is obtained.
See also
- arithmetic progression
- geometric series
References
external links
- Weisstein, Eric W. «Geometric Progression.» In Weisstein, Eric W., ed. MathWorld (in English). Wolfram Research.
- Sum of Geometric Progression Calculator
authority gimnasia |
|
---|
Data: Q173523
Video sobre Como Calcular El Termino General De Una Progresion Geometrica
Progresión GEOMÉTRICA: Punta General y Suma de Términos 🌀 SUCESIONES
Pregunta sobre Como Calcular El Termino General De Una Progresion Geometrica
Si tiene alguna pregunta sobre Como Calcular El Termino General De Una Progresion Geometrica, háganoslo instrucción, ¡todas sus preguntas o sugerencias nos ayudarán a valer en los siguientes mercadería!
Mi hueste y yo compilamos el crónica Como Calcular El Termino General De Una Progresion Geometrica a nacer de muchas fuentes. Si encuentra herramienta el crónica Como Calcular El Termino General De Una Progresion Geometrica, apoye al hueste. ¡Me gusta o comparte!
Calificar mercadería Progresión geométrica – Wikipedia, la enciclopedismo extenso
Calificación: 4-5 estrellas
Calificaciones: 5397
Vistas: 29479921
Buscar palabras culminante Como Calcular El Termino General De Una Progresion Geometrica
Cómo encontrar el Punta General y las Suma de n términos y Suma de términos infinitos, de sucesiones que siguen una Progresión Geométrica.
SERIE sobre SUCESIONES 👉 https://youtube.com/playlist?list=PLiWRH3aE37VJCeMoGqlbnmNezI0KMk7tt
🏆 Si quieres pensionar al muesca, hazte rama aquende 👇
https://www.youtube.com/channel/UC_Myy53yTBO7ElRGg3eYLCA/join
🔔 Suscríbete para recorrer al baza de nuevos vídeos y directos.
🌐 SÍGUEME EN:
Instagram: https://www.instagram.com/susi.profe/
TikTok: https://www.tiktok.com/@susi.profe
Facebook: https://www.facebook.com/susiprofe/
Web Susi Profe: https://www.susiprofe.com
⏰ TIEMPOS:
00:00 Introducción
00:15 ¿Qué es un tonalidad geométrica?
00:45 Elementos
01:29 Punta universal
03:37 Suma de n términos
05:40 Suma de infinitos términos
#susiprofe #susi #triangulos #teoremadetales #vamosaello
—
Short Guitar Clip de Audionautix está sujeta a una otorgamiento de Creative Commons Attribution (https://creativecommons.org/licenses/by/4.0/)
Artista: http://audionautix.com/
Como Calcular El Termino General De Una Progresion Geometrica
modo Como Calcular El Termino General De Una Progresion Geometrica
tutorial Como Calcular El Termino General De Una Progresion Geometrica
Como Calcular El Termino General De Una Progresion Geometrica graciosamente
Fuente: es.wikipedia.org